

PLASMA TREATMENT OF BIO-BASED AND RECYCLED FIBRES TO IMPROVE THEIR ADHESION WITH MATRIX IN ECO-COMPOSITES

Frankfurt, 17th May 2019

Ruth Garcia Campà

Researcher Surface Technologies Unit R&D Advanced Materials Division

This project has received funding from:

- The European Union's Horizon 2020 research and innovation programme under grant agreement No 690638

- The Ministry for Industry and Information of the People's Republic of China under grant agreement No [2016]92

1. INTRODUCTION

Composites are important materials used in aircrafts:

- Excellent mechanical properties;
- Relatively low weight.
- Composites are normally reinforced with **carbon fibre** or **glass fibre**:
 - Man-made and energy-intensive in production.
- □ **Bio-fibres** and **recycled fibres** have been studied for the development of ecological improved composites:
 - The adhesion between fibers and matrix is lower.
- Plasma treatments can modify the fiber surface, promoting:
 - Enhanced adhesion between fibers and matrix;
 - Improved mechanical properties.

Flax Fibres (FF)

- □ High tensile strength
- □ Good specific stiffness, comparable to glass-fibres
- □ Acoustic and thermal damping
- □ High variability on the fibre cross-section

The low interfacial adhesion with the resin leads to low mechanical performance.

FF nonwoven (200 g/m²)

Recycled Carbon Fibres (rCF)

- □ Highest specific modulus and strength
- High temperature resistance, chemical inertness and high damping
- \Box Uniform cross-section (7 μ m)

The production process is complex and energy intensive. Recycled fibres become more and more available, but during the pyrolysis route the sizing is lost.

Loose rCF

rCF nonwoven (200 g/m²)

Plasma is a partially ionized gas composed of electrons, ions, photons, atoms and molecules, with negative global electric charge

Atmospheric pressure plasma

Low pressure plasma

Advantages of plasma technology:

- □ Neither water consumption nor wastewater effluents;
- □ No chemical consumption;
- Drying and curing processes are not necessary;
- □ Well-controlled and reproducible technique.

Adhesion mechanisms:

- Removal of surface contaminants
 - Enhanced fibre-resin contact
- □ Increased fibre surface roughness
 - Higher surface area

□ Increased surface energy

- Promote wetting of fibres by resin
- Deposition of functional groups onto the fibre surface:
 - Promote covalent bonding between fibre and bio-resin

Plasma treatment

TETRA 30 PC LF (Diener Electronic, GmbH)

Maximum sample size: 250 x 300 mm
 Gas: Air and Oxygen (10 - 20 cm³/min)
 Working pressure: 0.25 mbar
 Working power: 300 - 900 W
 Exposure time: 5 - 10 min

Composite manufacturing

Scheme of the vacuum bagging method

- □ Vacuum bag technique
- □ Bio-based epoxy resin
- \Box Number of layers: 6 8
- \Box Composite thickness: 3 4 mm

- 1. Epoxy resin preparation
- 2. Resin entrance pipeline
- *3.* Bag with the nonwovens
- 4. Vacuum pipeline
- 5. Vacuum pump

5. RESULTS

Contact angle (untreated fibres)

Krüss K100 MK2 tensiometer

Good wetting

Bad wetting

	Contact angle (º)	
Samples	Water	Epoxy resin
rCF w/ sizing	59 <i>,</i> 9⁰	71,6º
rCF w/o sizing	79,1º	82,3º
FF	64º	64,1º

Water absorption capacity (nonwovens)

 $WAC(\%) = \frac{(Wet weight - Dry weight)}{Dry weight} \cdot 100$

■ Untreated ■ Plasma treated

5. RESULTS

3-point bending test (UNE EN ISO 14125) – Flax fibres

130%

Flax fibres
Flax fibres + plasma 300W
Flax fibres + plasma 600W

5. RESULTS

3-point bending test (UNE EN ISO 14125) – rCF

Untreated

Plasma treated

Fracture surface of rCF-reinforced composite

9

6. CONCLUSIONS

- New eco-composites have been developed by combining bio-fibres and recycled fibres with bio-based resins;
- The effect of plasma treatment between fibre and matrix has been studied:

Recycled Carbon Fibres

- The original sizing improves the compatibility with the epoxy resin;
- The fibre without sizing was meant to improve its mechanical performance by being plasma-treated;
- Plasma treatments have increased significantly the water absorption capacity;
- Plasma treatments have improved the flexural properties of rCF-reinforced composites;
- The conductive nature of CF makes it necessary to avoid any contact point between fibres and electrodes.

Flax Fibres

- The untreated flax fibres already presented good compatibility with the resin;
- Plasma treatments have increased the water absorption capacity;
- Plasma treatments have improved the flexural properties of FF-reinforced composites;
- The moisture content of the fibres negatively affects the effectiveness of plasma treatments, and therefore is necessary to dry the fibres before the treatment.

Ruth Garcia Campà Surface Technologies Unit <u>rgarcia@leitat.org</u>

Thank you for your attention

This project has received funding from:

