Knowledge & Results


1. Chen C.Z., Li Y.* and Yu T., Interlaminar toughening in flax fiber-reinforced composites interleaved with carbon nanotube buckypaper, Journal of Reinforced Plastics and Composites, 33(20), 1859-1868, 2014

2. Li Y.*, Chen C.Z., Xu J., Zhang C.Z., Yuan B.Y. and Huang B.Y., Improved mechanical properties of carbon nanotubes coated flax fiber reinforced composites, Journal of Materials Science, 50(3), 1117-1128, 2015.

3. Shen X., Jia J.J, Chen C.Z., Li Y.* and Kim J.K., Enhancement of mechanical properties of natural fiber composites via carbon nanotube addition, Journal of Material Science, 49(8), 3225-3233, 2014.

4. Yu T., Ren J.*, Li S.M., Yuan H., Li Y., Effect of fiber surface-treatments on the properties of poly(lactic acid)/ramie composites. Composites Part A, 41, 499-505, 2010.

5. Li Y.*, Hu C.J., Yu Y.H., Interfacial Studies of Sisal Fiber Reinforced High Density Polyethylene (HDPE) Composites, Composites Part A., 39, 570-578, 2008.

6. Li Y. and Mai Y.W., Interfacial Characteristics between Sisal Fiber and Polymeric Matrices, Journal of Adhesion, 82, 527-554, 2006

7. Li Y., Mai Y.W. and Ye L., Effects of Fiber Surface Treatment on the Fracture-Mechanical Properties of Sisal-Fiber Composites, Composite Interfaces, 12(1), 141-163, 2005.

8. J. Bachmann, H. Fischer. „Bioharze und flammgeschützte Naturfasern: Nachhaltige Materialien für das Flugzeuginterieur?“ (German, engl.: “Bio-resins and flame retarded natural fibres: Sustainable materials for the aircraft interior?”). 2. AVK-Fachtagung „Flammschutz bei Composites-Anwendungen“.10. Dez. 2013, Frankfurt (Main), Germany.

9. J. Bachmann, B. Michelis: „Verbesserung der Brandeigenschaften von NFK im Hinblick auf den Luftfahrt-Kabineneinsatz“ (German, engl.: „Enhancing the flame properties of NFRP with regard to the aviation interior application“). Hanser Industrietag: Naturfaserverstärkte und andere innovative Verbundstoffe, 28. - 29.06.2011, Köln, Germany

10. Hexcel „Technical Fabrics Handbook“, December 2010

11. Ginger Gardiner. Lightning Strike Protection For Composite Structures. High-Performance Composites. 7/1/2006

12. Guo, M.,Yi, XS. The production of tough, electrically conductive carbon fiber composite laminates for use in airframes. Carbon, 58(2013):238-251

13. Guo, M.,Yi, X.,Liu, G.,Liu, L. Simultaneously increasing the electrical conductivity and fracture toughness of carbon-fiber composites by using silver nanowires-loaded interleaves. Composites Science and Technology, 97(2014):27-33

14. P. Wambua, J. Ivens, I. Verpoest. „Natural fibres: can they replace glass in fibre reinforced plastics?”, Composites Science and Technology 63, 2003, pp 1259-1264

15. H.L. Bos. “The Potential of Flax Fibres as Reinforcement for Composite Materials”, Doctoral thesis, TU Eindhoven, May 2004, Link:

16. S. Black. “Carbon fiber market: Gathering momentum”. High Performance Composites, March 2012

17. S. Pimenta, S.T. Pinto. “Recycling carbon fibre reinforced polymers for structural applications: Technology review and market outlook”. Waste Management 31, 2011, pp. 378-392

18. H. Fischer, H.G. Schmid. „Qualitätskontrolle für rezyklierte Carbonfasern“ (German, engl.: „Quality control for recycled carbon fibres“). Kunststoffe 11/2013, pp. 88-91

19. Guijun Xian, Surface grafting of flax fibres with hydrous zirconia nanoparticles and the effects on the tensile and bonding properties. Journal of Composite Materials. 0(0) 1–9! The Author(s) 2015, DOI: 10.1177/0021998315580450,

20. L. Dammer, M. Carus, A. Raschka, L. Scholz. „Market Developments of and Opportunities for biobased products and chemicals“, Nova Institue, 2013

21. “Global High-performance Thermoplastics Market 2015-2019”. Infinity Research Limited, January 2015, link:

22. E. Ghassemieh, M. Chiaberge: “Materials in Automotive Application, State of the Art and Prospects”. Book chapter in “New Trends and Developments in Automotive Industry”, InTech, 2011

23. M. Carus, L. Scholz: “Biowerkstoff-Report“ (German, engl.: „Bio material report“), Nova Institut, 2010

24. „U.S. and Western Europe Intumescent Coatings Markets“, Frost & Sullivan Market Research, August2009

25. I. Hamerton, “Thermosetting and Thermoplastic Polymer Matrices for Composites”, University of Surrey, Chemistry Department

26. J. Lunt, “Marketplace Opportunities for Integration of Biobased and Conventional Plastics”, Agricultural Utilization Research Institute (auri), September 2014

27. MIL-HDBK-17-3F, Military Handbook, Polymer Matrix Composites, U.S. Department of Defense (2002)

28. Pierfrancesco Cerruti, Maurizio Avella, Maria Emanuela Errico, Mario Malinconico, and Raffaele Corvino “New life for aircraft waste”. Plastics Reasearch Online.

29. Gardziella, A.; Pilato,L.A.; Knop, A. Phenolic Resins: Chemistry, Applications, Standardization, Safety and Ecology, 2nd Edition

30. “Composites: materials of the future; Part 10: Composites in aeronautics”. Available at: “”

31. Pickering, S.J. “Recycling technologies for thermoset composite materials—current status” Composites: Part A Vol. 37, pp. 1206–1215 (2006)

32. Gandini, A. “The irruption of polymers from renewable resources on the scene of macromolecular science and technology” Grenn Chemistry, Vol. 13, pp.1061 (2011)

33. Tan, S.G., et al “Biobased Epoxidized Vegetable Oils and Its Greener Epoxy Blends: A Review” Polymer-Plastics Technology and Engineering, Vol. 49, Iss. 15, pp. 1581-1590 (2010)

34. Raquez, M.A. et al “Thermosetting (bio)materials derived from renewable resources: A critical review” Progress in Polymer Science, Vol.35, Is. 4, pp. 487–509 (2010).

35. Auvergene, R. et al “Biobased Thermosetting Epoxy: Present and Future” Chemical Reviews, , Vol. 114 Iss. 2, pp 1082–1115 (2014)

36. Liu, Q. al. “Preparation of a bio-based epoxy with comparable properties to those of petroleum-based counterparts” eXPRESS Polymer Letters, Vol.6, N.4 pp. 293–298 (2012)

37. Li, C. et al “Synthesis, Characterization of a Rosin-based Epoxy Monomer and its Comparison with a Petroleum-based Counterpart” Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, Vol. 50, Iss 3,pp. 321-329 (2013)

38. Tang, L. et al “The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites” Carbon, Vol. 60, pp. 16–27 (2013)

39. Sánchez, M. et al. “Effect of the carbon nanotube functionalization on flexural properties of multiscale carbon fiber/epoxy composites manufactured by VARIM” Composites Part B: Engineering, Vol. 45, Iss. 1, pp. 1613–1619 (2013)

40. Yang, S. et al “Effect of functionalized carbon nanotubes on the thermal conductivity of epoxy composites” Carbon, Vol. 48, Iss. 3, pp. 592–603 (2010).

41. Mohammadrez, N. et al “Fabrication and characterization of silicon carbide/epoxy nanocomposite using silicon carbide nanowhisker and nanoparticle reinforcements” Journal of composite materials, online March 2015.

42. Kavitha, N. et al “Investigation of impact behavior of epoxy reinforced with nanometer- and micrometer-sized silicon carbide particles” Journal of Composite Materials. Online July 2012

43. Choi, E.S.,et al. “Enhancement of thermal and electrical properties of carbon nanotube polymer composites by magnetic field processing” Journal of Applied Physics Vol. 94, Vol. 9 (2013)

44. Wang X. et al. “Ultrastrong, Stiff and Multifunctional Carbon Nanotube Composites” Materials Research Letters, Vol. 1, Iss. 1, pp. 19-25 (2013)

45. Li, al. “Carbon nanotube–graphene nanoplatelet hybrids as high-performance multifunctional reinforcements in epoxy composites” Composites Science and Technology, Vol. 74, pp. 221–227 (2013)

46. Jang, J. et al. “Matrix modification with silane coupling agent for carbon fiber reinforced epoxy composites” Fibers and Polymers, Vol. 14, Iss. 5, pp 759-766 (2013)

47. Albdiry, M.T. et al “A critical review on the manufacturing processes in relation to the properties of nanoclay/polymer composites” Journal of Composite Materials, Vol. 47 , Iss. 9, pp. 1093-1115 (2013)

48. Döring, M. et al. “Environmal and Toxicological Properties of Halogen-free Flame Retardants. In Innovative Flame Retardants in E&E Applications”, 2nd ed.; pinfa: Brussels, Belgium, pp. 30-31 (2009).

49. C. Micaela et al. Electrical conductivity phenomena in an epoxy resin–carbon-based material composite. Composites Part A. 61 (2014) 108-114.

50. F. Heringhaus et al. Analytical modeling of the electrical conductivity of metal matrix composites: application to Ag-Cu and Cu-Nb. Materials Science and Engineering A347 (2003) 9-20

51. W.S. Bao et al. A novel approach to predict the electrical conductivity of multifunctional nanocomposites. Mechanics of Materials 46 (2012) 129-138

52. J-M. Thomassin et al. Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Materials Science and Engineering: R: Reports 74 (2013) 211-232

53. M-H. Al-Saleh et al. Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon 47 (2009) 1738-1746

54. M. Avella, A. Buzarovska, M. E. Errico, G. Gentile and A. Grozdanov (2009). Eco-Challenges of Bio-Based Polymer Composites. Materials, 2, 911-925.

55. R. M Jones. Mechanics of Composite Materials.Taylor and Francis Press, Second edition, Philadelphia, 1999.

56. V.V. Vasiliev, E.V. Morozov. Mechanics and Analysis of Composite Materials.Elsevier, London, 1993.

57. S. Oller, E. Oñate (1996). A Hygro-Thermo-Mechanical Constitutive Model for Multiphase Composite Materials.International Journal of Solids and Structures. Vol.33, No.20-22, pp. 3179-3186. 1996. ISSN: 0020-7683.

58. E. Car, F. Zalamea, S. Oller, J. Miquel, E. Oñate (2002). Numerical simulation of fiber reinforced composite materials. Two procedures.International Journal of Solids and Structures. Vol.39, No.7, pp. 1967-1986. Abril. 2002. ISSN: 0020-7683.

59. S. Oller, E. Car and J. Lubliner (2003). Definition of a general implicit orthotropic yield criterion.Computer Methods in Applied Mechanics and Engineering.Vol. 192, No. 7-8, pp. 895-912. Feb./2003. ISSN: 0045-7825.

60. S. Oller, J. Miquel, F. Zalamea (2005). Composite Material Behavior Using a Homogenization Double Scale Method.Journal of Engineering Mechanics - ASCE. Vol. 131, No. 1, pp. 65-79. Jan./2005. ISSN: 0733-9399.

61. L.G.Nallim, S. Oller, R. Grossi (2005).Statical and Dynamical behaviour of Thin Fibre Reinforced Composite Laminates with DiferentShapes.Computer Methods in Applied Mechanics and Engineering. Vol. Vol.194, Issue 17, pp. 1797-1822. Apr./2005. ISSN: 0045-7825.

62. L.G.Nallim, S. Oller (2008). An analytical–numerical approach to simulate the dynamic behaviour of arbitrarily laminated composite plates.Composite Structures. Vol. 85, Issue 4, pp. 311-325. Available online 23 October 2007. ISSN: 0263-8223.

63. L.G. Nallim, S. Oller (2010). Formulation of a Macro-Element to Analyze the Mechanical Behavior of General Composite Laminated Plates - Composite Laminates: Properties, Performance and Applications. Ed. Anders Doughett and PederAsnarez.Nova Science Publishers.Materials Science and Technologies. ISBN: 978-1-60741-620-3.

64. R.F. Rango, L.G. Nallim and S. oller (2013).Static and dynamic analysis of thick laminated plates using enriched macroelements. CompositeStructuresJournal., February 2013, in press.

65. D.S. Lee, C. Morillo, G. Bugeda, S. Oller, E. Onate (2012). Multilayered composite structure design optimisation using distributed/parallel multi-objective evolutionary algorithms.CompositeStructures, Volume 94, Issue 3, February 2012, Pages 1087-1096. ISSN: 0263-8223

66. D.S. Lee, C. Morillo, S. Oller, G. Bugeda, E. Onate (2013). Robust design optimisation of advance hybrid (fiber–metal) composite structures.CompositeStructures, Volume 99, 2013, Pages 181-192. ISSN: 0263-8223

67. F. Rastellini, S. Oller, O. Salomón and E. Oñate (2008). Composite material non-linear modelling for long fibre-reinforced laminates.Continuum basis, computational aspects and validations. Computers and Structures Vol. 86, pp. 879-896. ISSN: 0045-7949

68. S. Oller (2014). Numerical simulation of mechanical behavior of composite materials. Springer; 2014.

69. E. Comellas, S. Ivvan Valdez, S. Oller, S. Botello (2015). Optimization method for the determination of material parameters in damaged composite structures. Composite Structures 122 (2015), pp. 417–424.